Central and Local Limit Theorems for Numbers of the Tribonacci Triangle

نویسندگان

چکیده

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results Hwang and Bender, obtain constructive proof central theorem, specifying rate convergence to limiting (normal) distribution, as well new local theorem tribonacci triangle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pascal-like Triangle Related to the Tribonacci Numbers

A tile composed of two pieces, which we refer to as a fence tile, is introduced to give the Tribonacci numbers a new combinatorial interpretation. The interpretation is used to construct a Pascal-like triangle and various identities concerning the triangle are proven. An intuitive proof of a general identity for the Tribonacci numbers in terms of sums of products of the binomial coefficients is...

متن کامل

Central and local limit theorems for RNA structures.

A k-noncrossing RNA pseudoknot structure is a graph over {1,...,n} without 1-arcs, i.e. arcs of the form (i,i+1) and in which there exists no k-set of mutually intersecting arcs. In particular, RNA secondary structures are 2-noncrossing RNA structures. In this paper we prove a central and a local limit theorem for the distribution of the number of 3-noncrossing RNA structures over n nucleotides...

متن کامل

From Fibonacci numbers to central limit type theorems

A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers {Fn}n=1. Lekkerkerker proved that the average number of summands for integers in [Fn, Fn+1) is n/(φ 2+1), with φ the golden mean. This has been generalized to the following: given nonnegative integers c1, c2, . . . , cL with c1, cL > 0 and recursive sequence {Hn}n=1 ...

متن کامل

Central and Local Limit Theorems in Markov Dependent Random Variables

We consider an irreducible and aperiodic Markov chain {kn}n=0 over the finite state space E = {1, . . . , p} with positive regular transition matrix P = {pij} and additive component {Un} such that {Sn} = {(kn, Un)} is also a Markov chain over the state space E1 = E × R. We prove a central and a local limit theorem for this chain when the probability density functions of {Sn}, conditional on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2021

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math9080880